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Summary

 

After stimulation with anti-CD3 antibody 

 

in vitro

 

, CD57

  

++++

 

 T cells showed a
greater susceptibility to apoptosis than CD57

 

–

 

 aaaabbbb

 

T cell receptor (TCR)

  

++++

 

 T
cells (regular aaaabbbb

 

 T cells). The apoptotic fraction of CD57

  

++++

 

 T cells showed an
increased production of active caspase-3. An increase in both Fas expression
and Fas-ligand (FasL) production was also observed in CD57

  

++++

 

 T cells, whereas
the expression of survivin was suppressed in CD57

  

++++

 

 T cells compared to that
of regular aaaabbbb

 

 T cells. CD57

  

++++

 

 T cells display a biased expansion of a few Vbbbb

 

 T
cell fractions in individuals, but such Vbbbb

 

 T cells were not specifically suscep-
tible to CD3-mediated apoptosis. The TCR expression level of CD57

  

++++

 

 T cells
was much lower than that of regular T cells and anti-TCR antibody stimula-
tion induced a smaller apoptotic proportion of CD57

  

++++

 

 T cells than did anti-
CD3 antibody. Although the CD3eeee

 

 expression levels were similar in both T
cell subsets, the CD3zzzz

 

 level of CD57

  

++++

 

 T cells was significantly higher than that
of regular T cells. These results suggest that several apoptotic and anti-apop-
totic molecules are involved in the CD3-induced apoptosis of CD57

  

++++

 

 T cells
and raise the possibility that the imbalance in expression of the CD3eeee

 

 and
CD3zzzz

 

 chains may also contribute to the susceptibility of CD57

  

++++

 

 

 

 T cells to
undergo apoptosis.
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ntroduction

 

Human T cells with a natural killer cell marker, CD57 [1], are
known to increase with ageing and have been suggested to
differentiate extrathymically [2–5]. Because CD57

 

+

 

 T cells,
most of which are CD8

 

+

 

, have a capacity to produce a larger
amount of interferon (IFN)-

 

g

 

 than regular 

 

ab

 

 T cells [4],
they seem to play an important role in the immunological
changes with ageing, and may therefore affect the T helper 1
(Th1)/T helper 2 (Th2) balance.

However, human CD57

 

+

 

 T cells and another type of
human natural killer (NK)-type T cell, namely CD56

 

+

 

 T
cells, have been shown to kill not only tumours but also vas-
cular endothelial cells when activated with cytokines or bac-
teria superantigens [6,7] while also producing a large
amount of Fas-ligand (FasL) [8]. Furthermore, these human
NK-type T cells are also more susceptible to apoptosis after
CD3/T cell receptor (TCR) cross-linking than ordinary T
cells [4]. Using a mouse model, we also reported recently that

natural killer 1·1Ag (NK1·1)

 

+

 

 T cells stimulated with a syn-
thetic ligand, 

 

a

 

-galactosylceramide, produce IFN-

 

g

 

 to acti-
vate NK cells and CD8

 

+

 

 T cells and kill tumours [9–11],
whereas Fas-ligands produced by them cause the severe
hepatic injury. Furthermore, these functions of NK1·1

 

+

 

 T
cells become enhanced with mouse ageing [10]. However,
NK1·1

 

+

 

 T cells rapidly undergo apoptosis after activation,
probably not to induce further tissue injuries [9,12],
although it has been reported recently that in some animal
models spleen and liver NK T cells do not undergo apoptosis
after 

 

a

 

-galactosylceramide or IL-12 stimulation but instead
become phenotypically inactive because of the down-regu-
lation of NK1·1 and internalization of T cell receptors [13–
15]. Although NK-type T cells both in humans and mice are
important effectors against tumours and infections by
inducing the Th1 immune response, they may be autoreac-
tive to eliminate abnormal cells and senescent cells in aged
hosts, and they may thus need to rapidly undergo apoptosis
or to down-regulate their molecules not to induce further
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tissue damage. It is therefore important to elucidate the
mechanism of apoptosis of CD57

 

+

 

 T cells to obtain a better
understanding of their physiological behaviour and roles in
the immunology of elder hosts. It is known that activation of
T cells results in the increased expression of apoptosis-induc-
ing molecules including Fas (CD95) and FasL [16–18].

In the present study, we demonstrate the unique features of
CD57

 

+

 

 T cells, in view of apoptosis-related molecules regard-
ing such factors as the caspase-3 activity, Fas/FasL expression
and survivin expression. We also show an imbalance of
CD57

 

+

 

 T cells in the expression between CD3

 

e

 

 and CD3

 

z

 

molecules and such an imbalance may be involved in the
susceptibility of CD57

 

+

 

 T cells to CD3-induced apoptosis.

 

Materials and methods

 

Cell sorting and culture

 

Heparinized peripheral blood samples were obtained from
adult volunteers. Prior to the blood collection, the aim and
details of the experiments were explained thoroughly and
consent was obtained from all subjects. Peripheral blood
mononuclear cells (PBMC) were separated from peripheral
blood by Lymphoprep

 

TM

 

 (Nycomed Pharma AS, Oslo, Nor-
way). Surface phenotypes of the PBMC were identified by
monoclonal antibodies in conjunction with three-colour
immunofluorescence tests. For sorting experiments, PBMC
were stained with PE-anti-

 

ab

 

 TCR antibody, FITC-anti-
CD57 antibody and PC5-anti-CD56 antibody. Next, CD56

 

–

 

CD57

 

+

 

ab

 

 TCR

 

+

 

 cells (CD57

 

+

 

 T cells) and CD56

 

–

 

CD57

 

–

 

ab

 

TCR

 

+

 

 cells (regular 

 

ab

 

 T cells) were purified with a fluores-
cence-activated cell sorter (EPICS Elite, Beckman Coulter,
Fullerton, CA, USA). The purity of each population was
more than 95%. One hundred 

 

m

 

l (5 

 

m

 

g/ml) of anti-CD3 anti-
body (UCHT1) were incubated at 37

 

∞

 

C for 4 h in 96-well
flat-bottomed plates to immobilize the antibody before
starting the culture. The cells of each T cell population
(1 

 

¥

 

 10

 

5

 

 in 100 

 

m

 

l of RPMI 1640 containing 20% human
serum) were cultured with immobilized anti-CD3 antibody
in a 96-well flat-bottomed plate. The cells were harvested
serially and then subjected to the experiments described
below. In the case of anti-

 

ab

 

 TCR stimulation, 100 

 

m

 

l (5 

 

m

 

g/
ml) of anti-TCR pan 

 

ab

 

 (BMA031) was immobilized to the
culture plate and used for the experiments. In some cases,
lymphocytes were cultured with anti-IFN-

 

g

 

 or 5 ng/ml of
interleukin (IL)-15 (Genzyme).

 

Assay for lymphocyte apoptosis

 

An assay for reactivity to annexin V in apoptotic cells was
performed using commercial reagents (Immunotech,
Marseille, France) according to the manufacturer’s instruc-
tions. After staining the cells with FITC-annexin V and pro-
pidium iodide, the cells were applied to a flow cytometer
(EPICS XL, Beckman Coulter).

The caspase-3 activity of the lymphocytes was evaluated as
the protease activity of caspase-3 by using the PhiPhiLux-
G

 

1

 

D

 

2

 

 kit (OncoImmunin, Inc., Gaithersburg, MD, USA)
after 

 

in vitro

 

 cultivation. PhiPhiLux-G

 

1

 

D

 

2

 

 (GDEVDGI fluo-
rogenic heptapeptide), a substrate for the caspase-3, can
penetrate into the cell nucleus and is converted to the fluo-
rescent form when it is cleaved by the protease activity of
caspase-3. The cells were incubated with PhiPhiLux G1D2
for 1 h at 37

 

∞

 

C and then stained with PI. The caspase-3 activ-
ity in lymphocytes was analysed by cytometer.

 

Analysis of CD95 expression

 

Monoclonal antibody against CD95 (clone UB2, Beckman
Coulter) was used to detect the expression level of Fas mol-
ecules on the cultured lymphocytes. The Fas expression was
evaluated as the mean fluorescence intensity calculated from
the flow cytometry results.

 

Reverse transcription-polymerase chain reaction 
(RT-PCR) analysis of survivin and Fas-ligand (FasL)

 

Total RNA was isolated from 1 

 

¥

 

 10

 

6

 

 cells using a GlassMAX®
RNA Microisolation Spin Cartridge System (Life Technolo-
gies, Inc., Rockville, MD, USA) according to the instruction
manual. RNA (0·5 

 

m

 

g) was reverse transcribed with a Super-
Script One-Step RT-PCR™ System (Life Technologies, Inc.).
The RT reaction was performed at 45

 

∞

 

C for 30 min and was
then terminated by heating to 94

 

∞

 

C for 2 min. PCR consisted
of 40 cycles of denaturation at 94

 

∞

 

C for 45 s, annealing at
53

 

∞

 

C for 1 min, and extension at 72

 

∞

 

C for 1 min. The
sequence of the oligonucleotide primers were as follows:
survivin-forward (5

 

¢

 

-AGGACCACCGCATCTCTAC-3

 

¢

 

),
survivin-reverse (5

 

¢

 

-ACTTTCTTCGCAGTTTCCTC-3

 

¢

 

),
FasL-forward (5

 

¢

 

-CACCCCAGTCCACCCCCTGA-3

 

¢

 

), FasL-
reverse (5

 

¢

 

-AGGGGCAGGTTGTTGCAAGA-3

 

¢

 

), GAPDH-
forward (5

 

¢

 

-GTGAAGGTCGGAGTCAACG-3

 

¢

 

), and
GAPDH-reverse (5

 

¢

 

-GGTGAAGACGCCAGTGGACTC-3

 

¢

 

).
The PCR products were separated on 2% agarose gel and
were then transferred to a nylon membrane (Immobilon-S,
Millipore Corporation, Bedford, MA, USA) with a semidry
electroblotter (Nihon Eido Co. Ltd, Tokyo, Japan). Next, the
PCR products were probed with a digoxigenin (DIG)-
labelled internal probe (survivin internal probe: 5

 

¢

 

DIG-
CACTGCCCCACTGAGAAC-3

 

¢

 

; FasL internal probe:
5

 

¢

 

DIG-CTGGAATGGGAAGACACCT-3

 

¢

 

) and visualized
using the DIG Luminescent Detection Kit for Nucleic Acids
(Boehringer Mannheim, Mannheim, Germany) according to
the manufacturer’s instructions. In the case of GAPDH (used
as an internal standard), the agarose gel was stained with
ethidium bromide and visualized by UV light.

 

Analysis of Vbbbb

 

  TCR repertoire of regular aaaabbbb

 

 T cells and 
CD57

  

++++

 

 T cells

 

The cells were analysed by three-colour flow cytometry using
PE-anti-

 

ab

 

 TCR antibody, PC5-anti-CD56 antibody, FITC-
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anti-CD57 antibody and various PE-anti-V

 

b

 

 TCR antibod-
ies (Vb1, 2, 5·1, 8, 9, 14, 17 and 22) (Beckman Coulter).
Anti-Vb TCR antibodies that reportedly reacted with rela-
tively larger populations of ab T cells were selected and used
in this study. The percentage of each Vb T cell population
was determined as follows:

% of Vb T cells in regular ab T cells = (% CD56 - CD57 - Vb 
T cells/% CD56 - CD57 - ab T cells) ¥ 100

% of Vb T cells in CD57 + T cells = (% CD56 - CD57 + Vb 
T cells/% CD56 - CD57 +  ab T cells) ¥ 100

Expression of aaaabbbb TCR, CD3eeee and CD3zzzz molecules

The expression of ab TCR and CD3e molecules on the
CD57– (regular ab) T cells and CD57+T cells was examined
by a regular three-colour fluorescence-based surface marker
analysis. The expression of intracellular CD3z molecules was
examined by the techniques as described in the instruction
manual. In brief, the PBMC were stained with membrane-
specific conjugated antibodies (FITC-anti-CD57 and PC5-
anti-ab TCR) and incubated for 30 min at room tempera-
ture in the dark. After washing, the cells were fixed with
0·25% formaldehyde-phosphate-buffered saline (PBS) for
10 min. Then the membrane was then permeabilized by dig-
itonin (100 mg/ml) for 15 min on ice. The intracellular com-
ponent of z molecules in the CD3 complex was stained
by PE-antiz monoclonal antibody (clone 2H2D9, TIA-2,
Immunotech) in a saturating concentration. In each case, the
stained cells were assessed by a flow cytometric analysis, and
then the mean fluorescence intensity of the ab TCR, CD3e
and CD3z molecules was measured.

Statistical analysis

Differences between the two groups (regular ab T cells and
CD57+ T cells) were analysed by Student’s t-test and were
considered to be significant when P < 0·05.

Results

High susceptibility of CD57++++ T cells to apoptosis in 
response to CD3-stimulation

Purified regular ab T cells and CD57+ T cells were stimulated
with anti-CD3 antibody and the susceptibility to apoptosis
was compared by a flow cytometric analysis using PI and
FITC-annexin V staining (Fig. 1a, left). ab T cells main-
tained a high viability (>90%) during the observation period
and the frequency of apoptotic cells was very small. In con-
trast, a remarkable increase in annexin V-positive (apop-
totic) or both annexin V- and PI-positive (post-apoptotic
necrosis) fractions was observed in CD57+ T cells from 12 h
after CD3-stimulation. The apoptotic fraction reached more
than 40% of the cultured CD57+ T cells at 48 h (Fig. 1a,
right). This suggests that apoptotic cell death and post-
apoptotic necrosis were actively induced in CD57+ T cells
after stimulation with anti-CD3 antibody.

To confirm whether CD57+ T cells are really more prone to
undergo apoptosis than regular ab T cells, the apoptotic
ratio of CD57+ T cells in co-cultures containing regular ab T
cells was measured (Table 1). The apoptotic ratio of CD3-

Table 1. Apoptotic ratio after CD3 stimulation in mixed culture of 

CD57+ T cells and regular ab T cells.

Time after CD3

stimulation

Apoptotic ratio (% of annexin 

V-positive cells)*

P-value†CD57+ T cells CD57–ab T cells**

Day 1 42·8 ± 3·4 20·4 ± 7·0 <0·05

Day 2 27·3 ± 2·0 10·5 ± 2·5 <0·001

*Unsorted whole PBMC were stimulated with anti-CD3 antibody

and apoptotic fraction was analysed by a three-colour flow cytometry.

Apoptotic ratio was calculated as annexin V-positive fraction in

CD57+ab TCR+ (CD57+ T) cells or CD57-ab TCR+ (CD57-ab T) cells.

**In this analysis CD57-ab T cells may include CD56+ T cells, which

are also susceptible to CD3 stimulation-induced apoptosis [4]. Never-

theless, CD57+ T cells show much higher apoptotic ratio than CD57-ab
T cells. †P-value was analysed by a Student’s t-test (n = 3).

Fig. 1. Apoptosis and apoptosis-related molecules of CD57+ T cells after stimulation with anti-CD3 antibody or anti-ab TCR antibody. (a) Time-

course of CD3-stimulated apoptosis in regular ab T cells and CD57+ T cells. Representative results are shown from repeated experiments with similar 

results. Left: each T cell population was stimulated with anti-CD3 antibody for 12, 24 and 48 h and stained with propidium iodide (PI) and FITC-

annexin V and was then analysed by flow cytometry. Right: the percentages of the apoptotic (annexin V-positive and PI-negative) cells, necrotic (PI-

positive) cells and viable (both annexin V and PI-negative) cells were calculated from the results of the flow cytometric analyses and displayed as a 

function of the time after CD3-stimulation. (b) The expression of cell-surface Fas molecules in regular ab T cells and CD57+ T cells after CD3-

stimulation. Left: flow cytometry results for expression of Fas in each T cell population at 24 and 48 h after stimulation with anti-CD3 antibody. 

Middle: a histogram overlay of the results of regular ab T cells and CD57+ T cells at 24 h. Note the increased expression of Fas molecules on the surface 

of CD57+ T cells. Right: the Fas level was expressed as the mean fluorescence intensity (FI) and displayed on the graph. (c) Time-course of anti-ab 

TCR-stimulated apoptosis in regular ab T cells and CD57+ T cells. Representative results are shown from repeated experiments with similar results. 

Each T cell population was stimulated with anti-ab TCR antibody for 12, 24 and 48 h and stained with PI and FITC-annexin V and then was analysed 

by flow cytometry. The percentages of the apoptotic cells, necrotic cells and viable cells were calculated and displayed as a function of the time after 

ab TCR-stimulation.



Apoptotic susceptibility of CD57+ T cells

© 2004 British Society for Immunology, Clinical and Experimental Immunology 271

Regular abT cells(a)

(b)

(c)

Regular abT cells

Regular abT cells CD57+ T cells

CD57+ T cells

12 h 1 2

4
E

10
00

0·
1

0·1 1000FITC

P
I

C
el

l c
ou

nt

F
L3

 L
O

G
24 h 1 2

4
E

10
00

0·
1

0·1 1000FITC

CD57+ T cells
F

L3
 L

O
G

48 h 1 2

4333
E

10
00

0·
1

0·1 1000

F
L3

 L
O

G

12 h 1 2

4
E

10
00

0·
1

0·1 1000FITC

F
L3

 L
O

G

24 h 1 2

4
E

10
00

0·
1

0·1 1000FITC

FITC

FITC

Annexin V (FITC)

F
L3

 L
O

G

48 h 1 2

4333
E

10
00

0·
1

0·1 1000
F

L3
 L

O
G

24 h

48
C

ou
nt

0

0·1 1000

48 h

60
C

ou
nt

0

0·1 1000

24 h

64
C

ou
nt

0

0·1 1000

48 h

64
C

ou
nt

0

0·1 1000

Fas (FITC)

24 h

48
64

0
16

32

C
el

l c
ou

nt

0.1 1 10

Fas (FITC)

100 1000

CD57+T cells

CD57+ T cells

regular ab T cells

Regular ab T cells

20

15

10

5

0
24 48

Time after CD3 stimulation (h)
F

as
 e

xp
re

ss
io

n 
(m

ea
n 

F
I)

100

90

80

70

60

50

40

30

20

10

0

F
ra

ct
io

n 
(%

)

Regular abT cells

12 24 36 48
Time after CD3-stimulation (h)

100

90

80

70

60

50

40

30

20

10

0

CD57+T cells

12 24 36 48

Apoptotic cells
Necrotic cells
Viable cells

Apoptotic cells
Necrotic cells
Viable cells

100

90

80

70

60

50

40

30

20

10

0
12 24 36 48

100

90

80

70

60

50

40

30

20

10

0
12 24 36 48

Time after abTCR-stimulation (h)

F
ra

ct
io

n 
(%

)



N. Shinomiya et al.

272 © 2004 British Society for Immunology, Clinical and Experimental Immunology, 139: 268–278

stimulated CD57+ T cells showed a much higher value than
CD57–ab T cells (P < 0·05 at day 1 and P < 0·001 at day 2).
This means that CD57+ T cells are highly apoptotic in their
nature even in the presence of other supporting cells such as
regular ab T cells.

Surface expression of the Fas molecules after 
CD3-stimulation

The surface expression of the Fas molecules is one of the
most important factors to assess the susceptibility of the cells
to apoptosis because this molecule is proved to be involved
directly in the activation of caspase-3, a key enzyme in the
execution of DNA fragmentation. Therefore, the surface
expression of the Fas molecules in the purified regular ab T
cells and CD57+ T cells after CD3-stimulation was observed
by a flow cytometric analysis (Fig. 1b). The expression level
of the Fas molecules in regular ab T cells remained at a low
level 24 h after CD3-stimulation, and it then increased at
48 h. In contrast, Fas expression on the surface of CD57+ T
cells was remarkably up-regulated at 24 h, and thereafter it
decreased at 48 h (Fig. 1b, left). An overlay histogram anal-
ysis (Fig. 1b, middle) revealed that the fluorescence intensity
of the Fas molecules in CD57+ T cells at 24 h was significantly
higher than that in regular ab T cells (14·8 versus 5·2)
(Fig. 1b, right).

Susceptibility of CD57++++ T cells to the apoptotic cell death 
after aaaabbbb TCR-stimulation

Purified regular ab T cells and CD57+ T cells were stimulated
with anti-ab TCR antibody and the susceptibility to

apoptosis was compared by a flow cytometric analysis using
PI and FITC-annexin V staining (Fig. 1c). Similar to the case
of anti-CD3 stimulation, ab T cells maintained a high via-
bility (about 90%) during the observation period and the
frequency of apoptotic cells was very small. In the case of
CD57+ T cells, unlike anti-CD3 stimulation, only 6–11% of
the cells were apoptotic, and the ratio of the necrotic fraction
remained below 18% throughout the observation period.
This strongly suggests that CD57+ T cells are relatively resis-
tant to apoptotic cell death after stimulation with anti-ab
TCR antibody in comparison to anti-CD3-stimulation.

Up-regulation of caspase-3 activity in the apoptotic 
CD57++++ T cells

To confirm the intracellular activation of the apoptosis-
related proteases, a caspase-3 activity was observed using a
fluorogenic substrate PhiPhiLux-G1D2 (Fig. 2). A remarkable
increase in the active caspase-3-positive fraction was
detected exclusively in CD57+ T cells. This result indicates
that the apoptosis-related signalling pathway is actively up-
regulated in the annexin V-positive CD57+ T cells after anti-
CD3 stimulation.

mRNA expression of survivin and FasL after 
CD3-stimulation

An increased Fas expression in CD57+ T cells after stimula-
tion with anti-CD3 antibody indicates that these cells
become sensitive to FasL and undergo activation-induced
cell death (AICD). In most cases, the Fas-FasL signalling in
these cells is considered to be carried out in an autocrine

Fig. 2. The expression of active caspase-3 in reg-

ular ab T cells and CD57+ T cells after CD3-

stimulation. 24 and 48 h after stimulation of each 

T-cell population with anti-CD3 antibody, intra-

cellular activation of caspase-3 was examined by 

using a PhiPhiLux-G1D2 substrate.
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manner. To confirm anti-apoptotic and pro-apoptotic events
in the CD3-stimulated lymphocytes, mRNA expression of
survivin and FasL was investigated in the purified regular ab
T cells and CD57+ T cells (Fig. 3). The expression of survivin
mRNA in regular ab T cells was detectable from 24 h and
it was up-regulated markedly at 48 h. In contrast, the
expression of survivin mRNA in CD57+ T cells was undetect-
able at 24 h although it became detectable at 48 h. In case of
FasL mRNA expression, remarkable RT-PCR bands were
detected in both regular ab T cells and CD57+ T cells from
24 h. The imbalance between anti-apoptotic molecules (sur-
vivin) and pro-apoptotic molecules (FasL) may explain the
high susceptibility to apoptosis in CD57+ T cells. According
to the annexin V analysis, the apoptotic ratio of CD57+ T
cells increased dramatically at 48 h (Fig. 1a) and this was also
supported by the results of the caspase-3 activity (Fig. 2).
However, there was a discrepancy between the time-course
of survivin expression and these results. One reason that the
survivin mRNA of CD57+ T cells is detectable at 48 h is that
most mRNA seems to be derived from viable (non-apop-
totic) cells while less mRNA is derived from apoptotic cells at
this time-point.

Vbbbb repertoires of CD57++++ T cells after CD3-stimulation

A Vb T cell repertoire analysis of the peripheral blood lym-
phocytes revealed that the biased expansion of a few Vb T
cells occurred in CD57+ T cells but not in regular ab T cells
(Fig. 4a). To observe the susceptibility of these expanded Vb
T cells to apoptosis, purified regular ab T cells and CD57+ T
cells were stimulated with anti-CD3 antibody, and a Vb T
cell repertoire analysis was performed in both apoptotic and
proliferative fractions (Fig. 4b). In regular ab T cells, any
Vb-specific occurrence of apoptotic cell death was not
observed in cases A and D. Regarding the clonality of CD57+

T cells, Vb2 and Vb8 were expanded selectively in the
periphery in cases A and D, respectively. After stimulation
with anti-CD3 antibody, neither a specific decrease of these
Vb T cells in the proliferative fraction nor a specific increase
of Vb T cells in the apoptotic fraction was observed. This
suggests that highly apoptosis-susceptible cells in CD57+ T
cells are not restricted to a few Vb T cell fractions expanded.

Expression of aaaabbbb TCR, CD3eeee and CD3zzzz in regular aaaabbbb 
T cells and CD57++++ T cells

Since regular ab T cells and CD57+ T cells showed a different
susceptibility to apoptotic cell death after CD3-stimulation,
and also CD57+ T cells showed a different susceptibility to
apoptosis between CD3-stimulation and ab TCR-stimula-
tion, the expression of ab TCR and CD3 molecules, which
are involved in the transduction of signals after the TCR
engages its ligand, was compared between these two lympho-
cyte groups (Table 2). No remarkable difference in the
expression level of CD3e chain, an extracellular component
of the CD3 molecule, was recognized between the two
groups. On the contrary, there was a significant increase in
the expression of the CD3z chain, an intracellular signal-
transducing component of the CD3 molecule, in CD57+ T
cells (P < 0·05). However, the expression level of ab TCR in
CD57+ T cells was far below that observed in regular ab T
cells (P < 0·0001). Consistent with the low TCR level of
CD57+ T cells, the anti-TCR antibody stimulated prolifera-
tion of CD57+ T cells was significantly lower than that
induced by anti-CD3 stimulation, while the difference was
not so evident in regular CD57– T cells (not shown).

Discussion

CD57+ T cells constitute approximately 20% of normal
human CD8+ T cells. This population increases dramatically
in patients after organ transplantation, with rheumatoid
arthritis, AIDS [19–23] and ageing [4]. Although their func-
tions have yet to be elucidated fully, CD57+ T cells should
participate in the host defence mechanisms including anti-
tumour and anti-infectious activities because they are potent
antitumour effectors and IFN-g producers and thereby
PBMC from elderly people produce a larger amount of IFN-
g after CD3-stimulation than do PBMC from younger
people [4,8].

However, regardless of their IFN-g producing capacity,
CD57+ T cells displayed a poor proliferative response and
high susceptibility to apoptotic cell death when stimulated
with anti-CD3 antibody (Figs 1a, 2). In contrast, anti-CD3
antibody was strongly mitogenic for CD57– regular ab T
cells and they also maintained a high viability. Several past
studies have emphasized that the poor ability of CD57+ T
cells to proliferate in response to mitogenic lectins and to
stimulation by CD3 antibodies was ascribed to a lack of IL-2
secretion [24,25]. In other reports, the CD57 expression on

Fig. 3. Expression of survivin and FasL in regular ab T cells and CD57+ 

T cells after CD3-stimulation. mRNA was harvested at 24 and 48 h, and 

RT-PCR for survivin and FasL was performed. GAPDH was used as an 

internal standard.
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Fig. 4. Vb repertoires of CD3-stimulated CD57+ T cells. (a) T cell receptor b repertoire of regular ab T cells and CD57+ T cells. PBMC from seven 

individual healthy volunteers were stained as described in Materials and Methods, and the percentage of Vb T cells in respective cell populations were 

compared. Note that an oligoclonal expansion of certain Vb T cells was observed only in CD57+ T cells (cases A, D and E). (b) A Vb repertoire analysis 

of regular ab T cells and CD57+ T cells after CD3-stimulation. Each T cell population was stimulated with anti-CD3 antibody for 48 h, and the 

percentage of Vb T cells in apoptotic and proliferative cell populations was compared. In the cell scatter analysis apoptotic cells were recognized as the 

fraction of low forward-scatter (FSC) and high side-scatter (SSC), whereas proliferative population was recognized as that of high FSC and intermediate 

SSC. Representative results (case A and case D) are shown in this figure.
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CD8+ T cells, CD4+ T cells and NK cells is reported to be a
general marker of proliferative inability [26], while the
CD57+ subset is considered mainly to represent recently acti-
vated effector T cells [27]. These findings suggest that CD57+

T cells are terminally differentiated and less proliferative.
However, another study suggested that CD57+ T cells can
demonstrate full autocrine proliferation if multiple acces-
sory signals are brought to the cells [28]. Therefore, it has not
yet been elucidated clearly regarding whether CD57+ T cells
are really more susceptible to undergo apoptosis than regular
ab T cells or they are simply more easily activated and fully
differentiated after in vitro stimulation. In our previous stud-
ies, however, after stimulation with IL-2, IL-12 and IL-15,
CD57+ T cells produce more IFN-g than normal CD8+ T cells
[4,8]. This suggests that purified CD57+ T cells do express
commong-chain associated receptors and are responsive to
their related cytokines. However, the addition of IL-15 in the
culture system cannot prevent CD3-mediated cell death of
CD57+ T cells (data not shown). Therefore, CD57+ T cells
seem to respond to exogenous cytokines through g-chain
associated receptors but they are prone to undergo apopto-
sis. We performed additional experiments in which unsorted
PBMC were stimulated by anti-CD3 antibody. CD57+ T cells
show a very high apoptotic (annexin V positive) rate even
under the support of regular ab T cells that are far less sus-
ceptible to apoptosis (Table 1). Taken together, we conclude
that CD57+ T cells are naturally a highly apoptosis-suscepti-
ble subset.

To determine what factors are involved in the susceptibil-
ity to apoptosis of CD57+ T cells after CD3-stimulation, we
investigated the expression of Fas molecules. Some reports
have suggested alterations in activation-induced apoptosis of
lymphocytes in ageing [29,30] and the involvement of the
Fas-mediated mechanism in increased apoptosis of T cell
subsets in aged humans has also been suggested [31]. Our
results revealed that the Fas expression on the surface of
CD57+ T cells was up-regulated remarkably within 24 h and
that Fas level remained low in regular ab T cells (Fig. 1b).
Therefore, the involvement of the Fas-mediated mechanism
was also suggested strongly in our experiments. We next
observed the difference in the expression of FasL between
regular ab T cells and CD57+ T cells, which is expressed pre-
dominantly in activated T cells [32–34]. However, FasL
mRNA was readily detectable and we could not find any dif-
ference in the FasL mRNA levels between the two groups
(Fig. 3). This was also confirmed by measuring FasL protein
levels in the culture medium (data not shown). This is in
contrast to the case of CD57+ T cells stimulated with a com-
bination of IL-2, IL-12 and IL-15 [8], in which CD57+ T cells
produce a larger amount of FasL than regular T cells.
Although the reason of this discrepancy is unclear at present,
Th1 cytokines may induce more strongly the autoreactivity
of CD57+ T cells than anti-CD3 antibody.

We next compared the anti-apoptotic activity between
regular ab T cells and CD57+ T cells. Survivin is a recently

recognized member of the inhibitor of apoptosis protein
(IAP) family [35]. Survivin binds with the terminal effector
caspases, namely caspase-3 and caspase-7, and inhibits their
protease activity. Survivin can be detected in the majority of
lymphocyte lines [35] and it effectively prevents apoptosis
induced by Fas signals [36]. Although the expression of sur-
vivin mRNA was clearly detected at 48 h, its mRNA level in
CD57+ T cells was almost nil at 24 h (Fig. 3). Therefore, soon
after stimulation with anti-CD3 antibody, CD57+ T cells are
considered to have very weak anti-apoptotic ability.

To avoid any possible harmful effects by continuously acti-
vated cells, activated NK-type T cells such as CD57+ T cells
may be prone to die rapidly after inducing a Th1-type
immune response in the hosts. In fact, CD57+ T cells as well
as CD56+ T cells activated by a bacterial superantigen or Th1
cytokines showed cytotoxicities against vascular endothelial
cells [6,7]. In addition, CD57+ T cells are main lymphocyte
populations that cause large granular lymphocyte leukaemia,
in which CD57+ T cells express high levels of Fas/FasL but are
resistant to Fas-mediated apoptosis and thereby rheumatoid
arthritis-like autoimmune disease may occur frequently in
patients with CD57+ T cell leukaemia [37,38]. We suggested
previously that human CD57+ T cells are a functional coun-
terpart of mouse CD8+CD122+ T cells with intermediate
TCR [39–41] because of their CD3-induced IFN-g pro-
duction capacity and antitumour cytotoxicity and are
more susceptible to CD3-induced apoptosis than regular
CD8+CD122– T cells (our unpublished observation). Fur-
thermore, our previous findings suggest that T cells accumu-
lated in the lymphadenopathy of Fas-mutated lpr/lpr mice
with the systemic lupus-like disease [42] may be a counter-
part of CD8+CD122+ T cells in normal mice [43,44], suggest-
ing both human CD57+ T cells and mouse CD8+CD122+ T
cells may cause autoimmune diseases under certain condi-
tions. An augmented Fas expression and reduced survivin
expression of CD57+ T cells may thus be an important mech-
anism for their susceptibility to AICD and to regulate both
their autoreactivity and tissue damage.

In some diseases, e.g. rheumatoid arthritis and AIDS,
CD57+ T cells are reported to increase in the inflammatory
sites as well as peripheral blood [21–23]. CD57+ T cells are
thought to be autoreactive and they may have a hazardous
effect on the hosts who are suffering from autoimmune dis-
orders. The dysregulation of apoptosis in CD57+ T cells
might contribute to the pathogenesis or inflammatory pro-
cess of these diseases. Recently, some reports revealed that
the expression of the z chain in T or NK cells is reduced in
patients with rheumatoid arthritis [45] or malignant diseases
[46–48], thus suggesting the importance of the expression
level of this molecule under normal conditions. It remains
unclear as to whether a decreased level of the z chain is
involved in the susceptibility of apoptosis in T or NK cells in
these diseases, but we think the dysregulation of the z chain-
associated signals may contribute to the cell survival of
CD57+ T cells.
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As we have reported recently [8,49], a biased expansion of
a few Vb T cells in CD57+ T cells was found in individuals
(Fig. 4a). The expansion may be the result of their activation
by a limited set of antigens because expanded Vb T cells in
CD57+ T cells are composed of a few T cell clones [8]. We
therefore examined whether these oligoclonally expanded
Vb T cell fractions are susceptible to apoptosis. However, we
did not find any correlation between the Vb T cell repertoire
of the CD57+ T cells and susceptibility to AICD (Fig. 4b).
The high susceptibility of CD57+ T cells to the AICD is thus
considered to be a common feature of the CD57+ T cells
themselves and it is not due to the nature of a certain Vb
CD57+ T cell fraction. CD57+ T cells are oligoclonal and
increase as age increases [4,5,50]. This suggests that they are
resistant to cell death and expand oligoclonally in an actual
in vivo situation. However, in vitro stimulation with anti-
CD3 antibody was found to lead CD57+ T cells to undergo
dramatic apoptosis, thus suggesting that unphysiological
and very strong stimulation may also transduce strong apo-
ptotic signals in an in vivo situation. Accordingly, this apop-
tosis system in CD57+ T cells seems to play an important role
in avoiding self-injury.

To investigate further the difference in the susceptibility to
apoptosis between regular ab T cells and CD57+ T cells,
receptor analyses were performed. The cell surface expres-
sion of the CD3 molecules (CD3e expression) was almost the
same between these two subsets, whereas the expression of
the intracellular component of the CD3 molecules, namely
CD3z, was significantly higher in CD57+ T cells than in reg-
ular ab T cells (Table 2). The z chain is involved in the trans-
duction of signals after the T cell receptor (TCR) engages its
ligand through the activation of the motif in the cytoplasmic
region of this molecule [51]. The z chain is also involved in
the regulation of the assembly and intracellular transport of
the TCR–CD3 complex [52]. Therefore, the expression level
of z may modulate the function (e.g. activation and matu-
ration) of z-expressing lymphocytes. The z chain has been
been shown recently to decrease in T cells from cancer
patients [53,54] and this appears to be greatly attributable to
the immunosuppression of patients [55]. Because CD57+ T
cells are considered to be potent IFN-g producers and anti-
tumour effectors in the elder hosts, a high expression of the
z chain may thus facilitate the functional role of CD57+ T

cells. In contrast to the high expression of the z chain, as we
reported recently [8], the expression level of ab TCR was low
in CD57+ T cells in comparison to regular ab T cells
(Table 2), which may reflect the result that CD57+ T cells
showed a very small number of apoptotic cells after stimu-
lation with anti-ab TCR antibody (Fig. 1c).

There are two candidate molecules on NK T cells that
might connect with the z chain except TCR. One is CD16
(Fcg receptor type III), which is more popular in NK cells.
CD16 is involved in the cytolytic activity of NK cells and
plays an important role in CD2 signal transduction through
the z chain [56], which contributes to both the adhesion and
signal transduction functions in T cells. The other is CD43,
which is a cell surface sialoglycoprotein implicated in both
haematopoietic cell adhesion and activation. The z chain has
been proven to function as a scaffold molecule in the CD43
signalling pathway and it activates T lymphocytes as well as
NK cells [57]. The distribution of the z chains among these
receptors inside the CD57+ T cells has not yet been analysed
clearly. However, we consider that either an imbalance of the
e chain and z chain may affect the CD3 signal transduction
or z chain-associated signal transduction pathways that do
not exist in regular ab T cells may cross-talk with the CD3
pathway and thereby stimulate the apoptotic pathway in
CD57+ T cells.

Taken together, CD3-stimulated CD57+ T cells showed
increased induction of pro-apoptotic molecules and a
decreased expression of anti-apoptotic molecules presum-
ably to limit their autoreactivity. Imbalanced expression lev-
els of the CD3z chain and CD3e chain and the signal
transduction mechanisms via their unique CD3 molecules
may also be involved in the susceptibility to apoptosis of
CD57+ T cells after CD3-stimulation.
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